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Abstract

Small-scale variations in bacterial abundance and community structure were examined in salt marsh sediments from Virginia’s eastern
shore. Samples were collected at 5 cm intervals (horizontally) along a 50 cm elevation gradient, over a 215 cm horizontal transect. For
each sample, bacterial abundance was determined using acridine orange direct counts and community structure was analyzed using
randomly amplified polymorphic DNA fingerprinting of whole-community DNA extracts. A geostatistical analysis was used to determine
the degree of spatial autocorrelation among the samples, for each variable and each direction (horizontal and vertical). The proportion of
variance in bacterial abundance that could be accounted for by the spatial model was quite high (vertical: 60%, horizontal: 73%);
significant autocorrelation was found among samples separated by 25 cm in the vertical direction and up to 115 cm horizontally. In
contrast, most of the variability in community structure was not accounted for by simply considering the spatial separation of samples
(vertical: 11%, horizontal: 22%), and must reflect variability from other parameters (e.g., variation at other spatial scales, experimental
error, or environmental heterogeneity). Microbial community patch size based upon overall similarity in community structure varied
between 17 cm (vertical) and 35 cm (horizontal). Overall, variability due to horizontal position (distance from the creek bank) was much
smaller than that due to vertical position (elevation) for both community properties assayed. This suggests that processes more correlated
with elevation (e.g., drainage and redox potential) vary at a smaller scale (therefore producing smaller patch sizes) than processes
controlled by distance from the creek bank. © 2002 Federation of European Microbiological Societies. Published by Elsevier Science
B.V. All rights reserved.
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1. Introduction ronmental variability and the overall scale of the measured

property. Consequently, measurements of microbial com-

Although individual bacterial cells function at a scale
that befits their small size [1], their combined localized
activities mediate processes that are important at the land-
scape scale. It is at this scale that microbial reactions are
most often studied and a great deal of effort is currently
being expended to try to relate the structure of these com-
munities to observed functional phenomena. When study-
ing microorganisms, the boundaries used to define a com-
munity are generally utilitarian and dictated by the
required sample size, the researcher’s perception of envi-
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munity attributes typically represent broad-scale charac-
terizations and rarely consider the small spatial scale at
which individuals and populations may actually be inter-
acting.

Although the broad-scale approach to studying micro-
bial communities has proved useful for monitoring large-
scale changes in microbial dynamics, studies of microbial
community patch size are rare, and knowledge about the
scales at which microbial interactions and associations be-
come important is incomplete. The total capacity of mi-
crobial communities in the environment is the sum of the
activity of several ‘unit’ communities of microorganisms
[2] in distinct microhabitats, whose separate activities are
pooled into what scientists observe as ecosystem function.
In order to understand how these spatial units fit together
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and how the activities of the distinct units contribute to
overall ecosystem function, a better understanding of the
distribution of microorganisms (and microbial commun-
ities) in space is needed.

In sampling theory, spatial scale is defined by several
characteristic properties: grain size, sampling interval,
and extent [3]. Grain size is the size of the elementary
sampling units (e.g., the volume of sample), and defines
the resolution of the study [4]. Sampling interval is the
average distance between sampling units. The extent is
the total area included in the study. The dimensions of
these components vary according to the ecological ques-
tion being addressed and what is already known about the
scale of the process of interest. For a given sampling de-
sign, no structure can be detected that is smaller than the
grain size or larger than the extent of the study; in this
way, the sampling design defines the observational window
for spatial pattern analysis [3].

Previously, researchers have considered the spatial dis-
tribution of microorganisms in many different environ-
ments and at a variety of spatial scales. In ecological stud-
ies, the grain size is generally too large to permit analysis
of the location or activity of individual organisms,
although experiments have been conducted at the micro-
scale to examine these properties [5-9]. For example, elec-
tron microscopy has been used to study the rhizosphere
colonization patterns of Pseudomonas flurorescens using a
sampling interval of 5 um [10]. At larger scales, studies in
agricultural soils have demonstrated that significant spatial
heterogeneity may exist for microbiological processes
[11,12], community structure [I13-15] and abundance
[9,16]; patch size estimates range widely from as little as
2 mm [12] to nearly 10 m [15]. Similar studies have been
conducted in grassland and forest soils [17-22], in a shal-
low coastal aquifer [23] and in the open ocean [24,25]. For
salt marsh and marine sediments, variation has been ex-
amined at small scales (< 1 m? [26-28]), and at intermedi-
ate (< 150 m [28,29]) and larger distances (km [28]). These
studies revealed that microbial communities can be orga-
nized at a variety of spatial scales, a likely reflection of the
scales of heterogeneity in the distribution of physical and
chemical properties of the environment under investiga-
tion.

In addition to the theoretical implications that motivate
research into the spatial distribution of microorganisms,
the results of such studies have important practical appli-
cations for scientists designing and planning experiments
at the field and landscape scales. While many ecological
theories and models acknowledge that elements that are
close to one another in space or time are more likely to be
influenced by the same generating processes, the same
energy inputs, or a similar physical environment, the clas-
sical statistical procedures employed to analyze these phe-
nomena assume independence of observations. Statisti-
cians generally count one degree of freedom for each
independent observation, which allows them to choose

an appropriate statistical distribution for testing. The
lack of independence that arises from the presence of au-
tocorrelation makes it difficult (in many cases, impossible)
to accurately determine the number of degrees of freedom
and correctly perform tests such as correlation, regression,
or analysis of variance (ANOVA). Positive autocorrelation
reduces within-group variability, artificially increasing the
amount of among-group variance, and often leads to the
conclusion that differences among groups are significant,
when in fact they are not [30].

Some procedures allow researchers to make corrections
and perform statistical analyses in the presence of spatial
autocorrelation (for an overview see [3,30-33]); however,
the application of these techniques is often limited by con-
straints such as sample size or the physical distribution of
sampling locations (e.g., a procedure may require sam-
pling locations to be along a regularly spaced grid [30]).
Another solution is to design a sample collection scheme
so that there is little spatial structure present in the data,
and then use parametric statistical hypothesis tests. In this
case, samples must be collected close enough together that
they represent replicates of the system under investigation,
but they must be placed far enough apart to avoid auto-
correlation. Regardless of which approach one chooses
(correction of statistical procedures or modification of ex-
perimental design), it is first necessary to describe the type
of autocorrelation present in a variable (e.g., gradient ver-
sus patches) and estimate its extent. There are several pro-
cedures available to test for the presence of spatial struc-
ture in ecological data (for reviews see [32,34-37]).
Geostatistics is a powerful tool that can provide insight
into the spatial structure and quantitatively describe spa-
tial variation by expressing a measure of association, or
autocorrelation, between two samples as a function of the
distance between them. Geostatistical analyses are com-
monly used in soil and mineral science, but less so in
microbial ecology [12,15,18-20,25,38-42].

The purpose of the present study was to examine the
spatial structure of microbial communities in salt marsh
sediments using traditional geostatistical techniques. Sam-
pling of unvegetated creek bank sediment in a Spartina
alterniflora-dominated salt marsh was undertaken at 5 cm
intervals. The community in the samples was characterized
microscopically (for total concentration of cells) and with
DNA fingerprinting (to determine the overall genetic sim-
ilarity between samples). These data were analyzed to de-
termine microbial community patch size, the amount of
spatial autocorrelation among the samples and the relative
importance of the horizontal (distance from creek bank)
versus vertical (elevation) separation of the communities.
Each of the analyses performed confirmed that spatial
autocorrelation existed at a relatively small scale (10—
100 cm). In general, spatial structure in abundance was
organized with a correlation length scale larger than that
for community structure, and the patch size for the com-
munities was greater in the horizontal direction than in the
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vertical. These results suggest that the study of salt
marshes at spatial scales such as these could provide in-
sight into the structuring and distribution of microbial
communities in these systems and help scientists to under-
stand within-marsh biogeochemical process variation.
Moreover, the work has important implications for re-
searchers conducting field experiments as it indicates that
sampling of these sediments at spacings less than the cor-
relation length scale of the property of interest may result
in inaccurate statistical analyses and incorrect conclusions.

2. Materials and methods
2.1. Sample collection

Sediment samples were collected from Phillips Creek
marsh in the Virginia Coast Reserve Long Term Ecolog-
ical Research site, on Virginia’s eastern shore, during
September of 1999. The area sampled (37°27.496'N,
75°50.075'W) was an unvegetated, intertidal portion of
the bank of a minor tributary of Phillips Creek. For
each sample, a small core was taken from the surface of
the marsh to a depth of approximately 5 cm using de-
tipped, 10 ml plastic syringes. The 44 sampling locations
in this study ranged vertically over 50 cm of elevation;
position was measured to the nearest 0.25 cm. The samples
were not regularly spaced over the elevation gradient but
the average separation between any pair of adjacent sam-
ples was 1.5 cm. The sampling locations were regularly
spaced at 5 cm intervals in the horizontal direction, rang-
ing over a length of 215 cm.

After collection, the sediment samples were transported
to the lab on dry ice and stored at —20°C until acridine
orange direct counts (AODC) [43,44] DNA extraction
could be performed.

2.2. DNA extraction and quantification

DNA was extracted from the sediment samples using
the MoBio UltraClean soil DNA isolation kit (Solana
Beach, CA, USA). The amount of sediment used in each
extraction ranged from 0.25 to 0.83 g; it was varied ac-
cording to cell counts (AODC), so that the quantity of
DNA obtained from each sample would be approximately
equal. Cells were lysed using the vortex procedure de-
scribed in the kit documentation. Purified DNA was re-
suspended in 10 mM Tris buffer and stored at —20°C. The
concentration of DNA from each sample was measured
using the PicoGreen dsDNA quantification kit (Molecular
Probes, Eugene, OR, USA).

2.3. RAPD community fingerprinting

2.3.1. RAPD conditions
Randomly amplified polymorphic DNA (RAPD) reac-

tions were performed as previously described [45]. Briefly,
5 ul of a DNA solution (approximately 350 pg DNA) was
added to a 20 ul reaction mixture containing: 10 mM
Tris—Cl (pH 8.3), 50 mM KCI, 1.5 mM MgCl,, 100 uM
each of dATP, dCTP, dGTP, and dTTP, the primer at
0.2 uM (Operon Technologies, Alameda, CA, USA), and
1 U of Tag DNA polymerase. The PCR program com-
prised 45 cycles of: 1 min at 94°C, 1 min at 36°C, and
2 min at 72°C. Amplification products were separated by
electrophoresis in 1.75% agarose gels (containing ethidium
bromide (0.25 ug ml™!)), and photographed under UV
light. Each sample was amplified using several different
RAPD primers (see below), and the individual results
pooled to represent a single community fingerprint.

2.3.2. Primer selection

Previous work that characterized the pelagic microbial
communities in Phillips Creek [45] was used to guide prim-
er selection in this study. Each primer successfully used in
the earlier study was tested on a subset of the sediment
samples; the number, clarity and distinctness of bands,
and the reproducibility of the RAPD fingerprints were
used to select the best primers to profile the entire set of
samples. Primers C4, F1, F3, F4, F5, F7 and T7 were
chosen for use (sequences available in Franklin et al. [45]
and from Operon Biotechnologies (www.operon.com)).
These primers are short (10 bp), random sequences that
can anneal at numerous locations throughout a genome
and they are not selective for individual organisms, groups
of organisms, or genes. Because of this, RAPD can detect
sequence variation that is distributed throughout the mi-
crobial DNA pool, theoretically producing a fingerprint of
the genetic composition of the entire community.

2.3.3. RAPD data analysis

The raw data from RAPD represent a series of bands in
an agarose gel, each being a DNA fragment of a certain
size. For each primer, each amplification band was treated
as a unit character and scored as present or absent in each
sample (i.e., recorded as 1 or 0). The results for all of the
primers were then pooled into a single large dataset. Col-
lectively, these primers produced a total of 87 bands and
individual samples contained between 11 and 34 bands.
The average number of bands produced for a given sample
was 21.

2.4. Variogram analysis of spatial autocorrelation

In this study, the variation in bacterial abundance (as
measured by AODC) and in community structural simi-
larity (as measured by RAPD fingerprinting) was com-
pared using a geostatistical semi-variogram analysis to
study autocorrelation as a function of distance. The cor-
relation between spatial separation and each community
parameter was modeled considering the two distance com-
ponents (horizontal and vertical) separately, rather than
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using the Euclidean distance between each set of samples,
as it was not expected that the scale of variability in the
horizontal and vertical directions would be the same.
Moreover, as the samples were taken along a slope, the
vector connecting many of the points (using Euclidean
distance) passed through the air, rather than the sediment,
so it did not seem reasonable to use this separation dis-
tance to model the spatial autocorrelation of the microbial
communities. Comparing each sampling location with
each of the other 43 resulted in a total of 946 points to
analyze (this is the number of points in the upper (or
lower) triangle matrix between each sampling location).

Prior to constructing a variogram, it was necessary to
segregate the data into distance classes (bins). The purpose
of binning the data was to obtain the best resolution (max-
imum detail) at small distances without being misled by
structural artifacts resulting from whatever particular size
class was chosen. To determine the appropriate number of
bins for each analysis, Sturge’s rule [3] was applied, which
states that the appropriate number of classes = 1+3.3 log 1o
m, where m is the number of points in either the upper or
lower triangle matrix (in this case, 946); the calculation
suggested that 10 size classes were appropriate for this
data set. Furthermore, variograms are generally not valid
beyond half of the maximum distance between samples,
and so the appropriate lag distance (the distance increment
for each class) was calculated as the maximum pair dis-
tance divided by 2 and then subdivided into 10 equal
classes [46]. For the vertical direction, this resulted in a
2.5 cm lag distance; for the horizontal direction, a lag
distance of 10 cm was established.

To calculate a variance term for the AODC, each value
was first normalized by dividing it by the average concen-
tration of cells among all samples. The inverted covariance
was then calculated between each pair of samples using
GEOEAS [46]. A traditional variance term could not be
calculated for the RAPD results (multivariate binary
data); instead, the relative similarity between each pair
of samples was determined using the Jaccard coefficient
(which is based upon the proportion of positive bands
shared by each sample pair [47]). This similarity matrix
was then converted to a dissimilarity matrix (dissimilar-
ity=1 — similarity), which represents the relative differ-
ence in community genetic structure between each pair of
samples. Plots of relative dissimilarity versus separation
distance should take the form of a typical variogram.

Experimental variograms are often fitted with a contin-
uous function to smooth out sample fluctuations and es-
timate useful model parameters (e.g., the correlation
length scale (range) and the spatial dependence). Several
types of functions are available including the linear, Gaus-
sian, exponential and spherical models. A linear variogram
would indicate a linear spatial gradient and would repre-
sent a situation where the samples are spatially autocorre-
lated at all distances measured (the sampling distance is
not large enough to capture all of the spatial variability at

that scale). Gaussian, exponential and spherical models
are bounded in that they level off, either at a given range
value (spherical model) or asymptotically (exponential and
Gaussian models). Differences between these functions lie
mostly in the shape of the left-hand portion of the curves,
near the origin; in practice, the spherical and exponential
models do not differ by much [3]. Several authors have
warned against the risk of numerical instability associated
with the Gaussian model, and it is rarely used at this point
[34].

For each parameter (community structure and AODC),
separate variograms were constructed for each direction
(horizontal and vertical). Data were then fitted with an
exponential model, as suggested by Legendre and Legen-
dre [3]:

y = Co+ Ci[1—exp(—3x/a)]

where y is the variance term [either inverted covariance
(for AODC) or dissimilarity (for genetic community struc-
ture)], and x is the spatial separation distance. From the
model, Cy, C;, and a were estimated; C, is a parameter
quantifying the nugget effect (the amount of variability at
distance =0), C; is a spatially structured component of the
model, and a is the range (the distance beyond which
variance is no longer a function of spatial separation).
The sill (C) is the y value at which the variogram levels
off and was calculated as: C=Cy+C;.

One difficulty with using equal distance classes when
constructing a variogram is that the number of pairs of
points in large distance classes is often too small for valid
testing; to avoid this problem, only the spatial structure of
the first two thirds of the variogram was modeled [35]. All
regressions were performed in SigmaPlot (Version 5.0) and
R? was used to measure the goodness of fit of the model to
the data.

2.5. Determination of group differences

2.5.1. Community structure

In addition to the geostatistical analyses, the data were
also analyzed to determine if any group differences existed
between samples positioned along the elevation gradient.
Samples were divided into four groups (Fig. 1) based on
elevation, horizontal position and frequency of inunda-
tion. The four groups were: group 1 (samples 1-16), sedi-
ment always saturated; group 2 (samples 17-26), sediment
frequently flooded; group 3 (samples 27-31), sediment oc-
casionally flooded; and group 4 (samples 32-44), sediment
rarely flooded. A Mantel test [48,49] was used to evaluate
whether overall microbial community structure was signif-
icantly different among the various groups. In general, a
Mantel test determines the amount of correlation between
two matrices, and a permutation procedure is used to as-
sess the significance of this correlation. In this application,
the two matrices being compared were (1) the observed
dissimilarity matrix calculated from the RAPD data, and
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Fig. 1. Map of creek bank showing sampling locations (indicated with
@), position of Phillips Creek, and approximate range of tidal influence
along the slope. Sampling locations were divided into four groups (1 to
4, bottom to top) based on their flooding frequency and elevation.

(2) a conceptual model matrix that defined group identity.
Data were analyzed to test the null hypothesis that there
was no difference within- and between-group genetic sim-
ilarities of the communities using the Mantel-Struct pro-
gram [50]. A Monte Carlo procedure (with 5000 permuta-
tions) was then used to control for the impact of spatial
autocorrelation among the sampling locations and to eval-
uate the significance of the group differences.

Community size (AODC)

75

2.5.2. Bacterial abundance (AODC)

A Mantel test was also used to compare bacterial abun-
dance in the different elevation groups. First, a dissimilar-
ity matrix was calculated by determining the absolute val-
ue of the difference between each sample pair, divided by
the maximum difference for all pairs. This matrix, along
with the group identity for each sample, was analyzed
using the Mantel-Struct program [50]; as above, a Monte
Carlo procedure (with 5000 permutations) was used to
determine statistical significance.

3. Results
3.1. Variogram analysis of spatial autocorrelation

Fig. 2 shows the results of the geostatistical analyses for
each parameter (bacterial abundance and community
structure) for each direction (horizontal and vertical).
The data were fitted with an exponential model, and the
model output is presented in Table 1. In general, the mod-
el fitted the data quite well (Table 1, Fig. 2); R varied
between 0.62 and 0.96, and all correlations were signifi-
cant, with P <0.005. For AODC, the spatial dependence
(the proportion of variance in the data that was accounted
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Fig. 2. Variograms constructed to model spatial autocorrelation in bacterial abundance (A and B) and difference in microbial community structure
(C and D) along the creek bank. Directional variograms were constructed for each parameter based upon either the horizontal (A and C) or vertical
(B and D) separation of the samples. Best-fit lines, constructed using an exponential model, are presented, as are the sill (asymptotic value of the curve)
and range (separation distance where y is 95% of the sill).
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Table 1
Summary of model parameters obtained from fitting an exponential equation to the experimental variograms
Parameter Direction Nugget (Cp) Sill Relative nugget effect Spatial dependence R’ Range
(C=Co+Cr) (G/CO) (GI/C) (cm)

Bacterial abundance horizontal 0.019 0.071 0.27 0.73 0.76 113
(AODC)

vertical 0.028 0.070 0.40 0.60 0.62 26
Difference in community horizontal 0.631 0.810 0.78 0.22 0.96 35
structure (RAPD)

vertical 0.732 0.818 0.89 0.11 0.79 17

for by the spatial model) was quite high. In the horizontal
direction, the spatial model could account for 73% of the
variance in microbial abundance; for the vertical direc-
tion, 60% of the variation in bacterial abundance could
be correlated with the spatial separation of samples. The
range (the distance beyond which data exhibit no spatial
autocorrelation) was 26 cm in the vertical direction and
113 cm in the horizontal. The sill (the value of the vario-
gram at distances beyond the range) was the same for both
directions.

In geostatistics, anisotropy is said to be present in data
when the autocorrelation function is not the same for all
geographic directions. In the case of bacterial abundance,
the analyses produced the same sill for the two different
directions, but different ranges; this phenomenon is re-
ferred to as geometric anisotropy [51]. A geometric aniso-
tropy ratio can be calculated as the ratio of the larger
range to the smaller range; here that ratio was 4.3 (hori-
zontal/vertical). This means that, on average, the same
amount of variability occurred over 4 horizontal distance
units as occurred in 1 vertical distance unit. It is interest-
ing to note the similarity between this value and the aspect
ratio (horizontal distance/vertical distance =4.3).

For similarity in community structure, spatial depen-
dence was lower (horizontal: 22%, vertical: 11%), and
most of the variation in community structure was not
accounted for by simply considering the spatial separation
of the samples. The range of spatial extent for overall
community structural similarity was smaller than that cal-
culated for bacterial abundance: 35 cm for the horizontal

Table 2

direction and 17 cm for the vertical. As with bacterial
abundance, the sills for the two directions were similar
and a geometric anisotropy ratio could be calculated. In
this case, the anisoptropy value was 2, a value smaller, but
in the same direction as for bacterial abundance (horizon-
tal/vertical).

3.2. Analysis of group differences

An analysis of group differences was performed to eval-
uvate whether the different flooding zones (Fig. 1) con-
tained communities whose structure and abundance were
significantly different. A Mantel test was performed and a
Monte Carlo procedure (using 5000 permutations) was
employed to assess the significance of the test statistic. A
Bonferoni-type correction was used to adjust the o level,
depending on the number of comparisons made [35]; a
modified o level of 0.008 (a=0.05 divided by six compar-
isons) was used.

Overall, the sample groups were found to contain sig-
nificantly different microbial communities as assayed by
RAPD fingerprinting (P =0.0002). Specifically, group 4
(rarely flooded/high marsh) was found to differ from all
of the other groups, and group 3 was significantly different
from group 1 (Table 2).

For microbial abundance, the average concentration of
cells (X 10'° cell ml™! sediment) was: group 1, 7.4; group
2, 5.6; group 3, 6.8; group 4, 7.8. Overall, these differences
were significant (P=0.03), with group 4 (rarely flooded/
high marsh) being the most distinct (Table 2).

Results from a series of Mantel tests comparing community properties for the different elevation groups; P values were obtained using a Monte Carlo

procedure (5000 permutations)

Group
1 2 3 4
abundance
1: always saturated - 0.62 0.99 0.003*
2: frequently flooded 0.088 - 0.007* 0.0008*
3: occasionally flooded 0.0008* 0.018 - 0.39
4: rarely flooded 0.004* 0.0002* 0.0006* -

community structure

The lower (left) half of the matrix contains the results for community structure (RAPD) and the upper (right) portion of the matrix contains the results

from the comparison of bacterial abundance (AODC).

* Significant P values, after o was corrected to 0.008 for multiple comparisons (see text).
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4. Discussion

The overall goal of this study was to quantify spatial
autocorrelation among the microbial communities residing
in salt marsh creek bank sediments. In particular, we
sought to determine the extent to which the spatial distri-
bution of samples contributes to overall between-sample
variability and to estimate microbial community patch
size. In general, the results demonstrated that small-scale
variability exits, both in terms of total bacterial abundance
(AODC) and in terms of community structure (RAPD
fingerprinting results). The patch size of the microbial
communities found in these sediments varied somewhat,
depending on the parameter used to assay the organisms
and on the way that the spatial separation of the sampling
units was calculated; patch size estimates ranged between
approximately 10 and 100 cm. These values are similar to
those obtained by other researchers in other environments,
as outlined in the introduction.

The correlation length scales for bacterial abundance
(AODC) were larger than the values obtained when con-
sidering community structure, for both directions (verti-
cal: 113 cm versus 35 cm; horizontal: 26 cm versus
17 cm). This finding suggests that the environmental fac-
tors controlling these two community attributes may be
different, and may vary at different spatial scales in the
environment. Alternately, these results could reflect a sin-
gle environmental parameter influencing the two microbial
attributes differently (or to different extents). Simultaneous
measurement of the distribution of microbial communities
and physicochemical properties (e.g., organic matter con-
centration, sediment moisture content, or redox status) at
small spatial scales would add greatly to our understand-
ing of how environmental heterogeneity can influence mi-
crobial community development and, conversely, of how
microbial communities may alter their microenvironment.
The samples collected for this study were too small to
permit measurement of the microbial communities as
well as physicochemical parameters.

Most of the studies of microbial community variability
at small spatial scales have considered more general prop-
erties (e.g., total abundance, biomass, or activity
[18,24,29]), while relatively few studies have examined
the distribution of microbial community structure
[13,22,23,25]. Of those that have, the range over which
the communities were spatially autocorrelated was gener-
ally smaller than the range established for more broad
microbial community properties. However, there are very
few studies that have compared these two aspects of the
same community [17,25]. Likewise, studies that have ex-
amined the distribution of guilds (e.g., denitrifiers [28]) or
specific groups of organisms [12,14,22] in the environment,
tended to find smaller correlation length scales than those
studies that assayed for more general microbial parame-
ters. This discrepancy may in part be due to the fact that
researchers who study specific functions or particular

groups of organisms are more likely to conduct experi-
ments at small spatial scales, while researchers who study
more general parameters often collect larger samples that
can limit the resolution of a study.

In this study, the spatial dependence (the percent of the
total variance in the data that can be explained by consid-
ering the spatial separation of the sampling units) was
much less for the analyses that considered community
structure (horizontal: 22%, vertical: 11%) than for the
analyses that considered bacterial abundance (horizontal:
73%, vertical: 60%). Most of the variability in community
structure must come from variation at other scales, exper-
imental error, or the influence of other environmental pa-
rameters. The reproducibility of the RAPD procedure is
sensitive to a number of experimental factors [52,53] and
experimental error might partially explain the relatively
large nugget effect observed in the geostatistical analyses
of the RAPD data, in comparison to the AODC data.
However, recent work has demonstrated the reproducibil-
ity of RAPD fingerprinting with microbial community
DNA samples [45,54], and it is unlikely that methodolog-
ical problems contributed significantly to the results pre-
sented here.

Given the relatively small proportion of the variance in
community structure that was spatially dependent, it
seemed reasonable to analyze the RAPD data to see if
there were any differences between groups of samples lo-
cated at different elevations (Fig. 1). Groups were defined
on the basis of vertical position and frequency of inunda-
tion, and roughly corresponded to four areas between low
and high marsh. The RAPD profiles obtained for the
group 4 samples (rarely flooded/high marsh) were signifi-
cantly different from those obtained in any of the other
zones (Table 2). Similarly, the communities inhabiting
group 3 (occasionally flooded) were significantly different
from the group 1 (saturated sediment/low marsh) com-
munities. For bacterial abundance (AODC), the group
differences were not as strong, although group 4 was again
distinct from the other samples. The flooding regime along
the creek bank could influence the microbial communities
in a number of ways. Besides the direct effect of inunda-
tion on microbial community structure (e.g., flooding
could add or remove organism types), there are a number
of different environmental parameters (e.g., sediment
moisture content, redox status) that may vary in response
to the patterns of water movement. Further study would
be necessary to establish whether any of these parameters
are important in generating the community differences ob-
served here.

One of the main problems when working with samples
that are spatially autocorrelated is that parametric statis-
tical procedures are not appropriate for data analysis. As
part of this study, we wanted to estimate the range of
spatial influence of microbial abundance within these sedi-
ments, and then to determine whether sampling beyond
this range provided a different estimate of mean bacterial
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concentration, compared to sampling that was conducted
at separation distances smaller than the correlation length
scale. To test whether the estimate of abundance one
would obtain by sampling two spatially autocorrelated
locations was significantly different from the value one
would obtain by sampling two locations that were spa-
tially independent, we calculated the average AODC be-
tween each pair of samples (to simulate several sampling
efforts), and then categorized each average as having been
obtained using spatially autocorrelated samples or as
being spatially independent. After sorting the averages
into these two groups, an ANOVA was used to determine
whether the estimates of abundance obtained using spa-
tially autocorrelated samples were significantly different
from those obtained using pairs of independent samples.
Overall, the estimate of mean AODC was significantly
lower using spatially autocorrelated samples [6.9x 100 +
4.2x10% (S.E.)] compared to spatially independent sam-
ples [7.6x10°+£58x10% (S.E.)] (ANOVA results: d.f.=
945, F=88.96, P <0.0009). This exercise demonstrates the
important impact spatial autocorrelation can have on the
estimate of mean environmental properties in a given re-
gion or habitat.

Another major trend revealed in this analysis was the
anisotropy associated with the distribution of microorgan-
isms in the sediments. For both community parameters,
the patch size was always greater when horizontal as op-
posed to vertical separation was used as the distance mea-
sure. This finding could partly be an artifact of the sam-
pling design — our sample density was much higher for the
x direction than for the y direction (44 samples per 50 cm
vertical elevation versus 44 samples per 215 cm horizontal
expanse). The higher sampling density meant that there
was a smaller average separation distance when consider-
ing elevation (1.5 cm) compared to the horizontal direc-
tion (5 cm), and this smaller separation distance increased
the opportunity to detect smaller-scale variability. Since
microbial communities are organized at a hierarchy of
spatial scales, it is possible that the sample design used
here simply captured community variation at two different
levels. It is also possible that there are different environ-
mental parameters influencing community development in
the two directions and that the processes more correlated
with elevation (e.g., drainage and redox potential) varied
at a smaller scale than the processes controlled by distance
from the creek bank. It is important to note that through-
out most of this discussion, the horizontal and vertical
components of space have been discussed as if they were
independent, though they are not.

Within marsh ecosystems, microbial communities serve
many critical functions, including the decomposition of
organic material and the biogeochemical cycling of miner-
als and nutrients. Researchers generally see a great deal of
variation in microbial community structure and processes,
both within and between marshes. Often, biogeochemical
process variation within visibly homogenous environments

of a single marsh is greater than that between marshes
[55-58]. The results presented here suggest that community
structure and microbial abundance can vary at small scales
(<1 m) in these systems, and that this information needs
to be incorporated into the experimental design when sam-
pling these habitats. It is reasonable to expect the patch
size of the microbial community to vary in different envi-
ronments, and some care must be taken when trying to
extrapolate the results of this work to other systems.
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